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The problem of stability of a pipe with a f uid flowing through it, which is
examined by Feodos'ev in [1] by the Galerkin method, is solved by a direct
Liapunov's method without assuming that the deflection is expressed as a pro-
duct of a function of coordinates and a function of time. It is shown, that
the value of the critical velocity obtained in [1] i1s exact., It is found,
that for nonzero suberitical velocities of the fluid flow the free vibra-
tions of the pipe are running waves along the pipe.

l. After introducing nondimensional variables, equations in [1] for the
deflection p(x,t) of the pipe, can be expressed in the form
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The nondimensional velocity v of the fluid and the nondimensional mass
parameter p are determined by the following equations:
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where g is the length of the pipe, £I 1s the stiffneas of the pipe, p, 7
and p.F, are the masses of the pipe and the fluid, correspondingly, per unit
length of the pipe, V 1s the velocity of the fluld in the direction of the
x=axis,

It is easy to verify, that the solutions w(x,¢) of the problem (1.1)
satisfy the relations
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Here and further on, the functions p (x,¢) are assumed to be continuous
on the basis of x, together with the derivatives, which appear when we
obtain Expressions 51.2) from Equations {1.1). The third term of the first
equation (1.1) did not appear in the energy integral (1.2), which proves the
gyroscopic character of this term. .

E tions (1.1) allow a solution w(x,t) = O , which corresponds to the
equigg:rium og the pipe. During the 1nvést15at1$n of the stabglity of this
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equﬁlai.britm let us take as a measure of perturbations the following fume-
tio: H
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0
which 1s defined at the points
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The equilibirium .w(x,2) = O will be considered stable, if for any ¢ > O
we can find such &(e) > O , that any solution of the problem (1.1) which
at the initial ihstant ¢, satisfies the condition

p (z(t)) < 8 (1.4)
for all t>>1t, of the region of definition ‘of the solution w(x,t), satisfies
the condition -

p(z () <& 1.5

Here, we have assumed the definition of stability 3.2. in [2], which is
uniform for a set of initial instants 7', = T (— oo <t < o0).

R, Let us make use of the functional #(z) , defined by the second equa-
tion (1.2), for the proof of the following assertion: when the condition

P 2.1)
is satisfied, the equilibrium w(x,t) = O 1s stable.

The first equation (1.2) shows that for the examined solutions p(x,t) of
the problem (1.1) the functional #(z) does not increase with time., Accord-
ing to the theorem 5.2 of [2], it remains to prove, that when condition (2.1)
is satisfied, the functional #(z) will be positive-definite and ¢ontinucus
with respect to the degree of perturbationap?la). These properties follow
immediately from the relations

H@>Ys — ) p (2, H(<p (2
in the proof of which it was taken into account that the following inequali-
ties are satisfied for the functions p(x,t) , which describe the motions
of the pipe: 1 1
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The first two inequalities (2.2) can be obtained by the methods, given in

papers [3 and 4], the remaining two inequalities can be obtained easily with
the aid of the Cauchy-~Buniakovskii inequality.

The assertion which was proved, leaves an open question about the stabi-
1ity of equilibrium w(x,t)= O when the condition (2.1) is violated.

It is easy to verify, that when any of the following conditions are satis
fied
v=4m m=14,2,...) (2.3)

the equilibrium wu(x,t) =0 1s unstable, because in this case Equations
(1.1) admit the solution

w (z, t) = ¢ {(t — ty) sin mnz + @ (2}} (2.4)

¢ (2) = :}:%{x[i — (=™ — 1+c05mnx+'-':‘ixsinmmc}

The choice of an arbitray constent o in the solution (2.4%) a1fows to
satisfy the condition (1.4) at the initial instant ¢, for any given number
5 > 0 ; nevertheless, the condition (1.5) will be violated for sufficlently
large t> t,. When anyone of the conditions (2.3) is satisfied, the
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instability of equilibrium p(x,¢) = O is stipulated by the growth of the
solution (2.4) in time,

80 the exact value of the first nondimensional critical velocity, sultable
for Equations (1.1), is given by the equality U = z 1 . Hence, by changing
to the dimensional quantities we obtain the critical velocity [1]

Vo= _.TE_ < LI )ls/x
- a \pF,

3. The condition of stadbllity (2.1) is obtained without any limitation
of the form of the solutions of the problem (1.1}. Introducing s complement-
ary assumption on the representation of the solution in the form

w {x, £} = X (a) &t 3.1

from (1.1) we obtain for the function r(x) and for the frequency w=P+ g
the generalized boundary value problem

XV (@) + 022X (z) + ZnpreX’ (v) + 02X (2) = 3.2)
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The zeros of the eigenfunction X{(x), which correspond to some eigenvalue
w, divide the interval 0 <z <{1 in a finite number of intervals Ennarennidy,
in each of these intervals the function can be expressed in the form

X (2) = | X (a) | ")

where 1 (x) = Arg X (z) is continuous in the interval &;  Prom here we can
see that the real and imag parts of the solution {3.1), which will be

also solutions of the prodlem (1.1), can be expressed in the following form
in each of the intervals g, (8.3)

w(z, ) =| X (2) | e” cos [¥ (2) + gtl, w(z, 1) = | X (z) | "' sin [ () + ¢¢]
Using the relations (1.2) and (2.2) we can prove the following assertion
when the condition O« p°<1 1s satisfled, all the eigenvalues w of the ﬂ);rob—
lem (3.2) are purely imaginary numbers (@ = ig, ¢ 5 0, p = 0), upon which the
condition ¢(x) # const is satisfied ror the corresponding solutions (3.3)

in each of the intervals ¢, , i.e. the vibdrations (3.3) have the form of
waves, running along the pipe.

Let us note, that in the case when the condition O<u®<1 is violated,
the assertion stated above may not be satisfled, For example, when of
the conditions (2.3) 1s fulfilled, the generalized boundary-value problem
(3.2) has a bouble eigenvalue w = O , to which corresponds the eigenfunction
X l(x = si(n man)x and the adjoint [5] function o(x), which is contained in the
solution (2.4).

The condition ¢ =const 1s satisfled (§=0 or ¢ -n% for the eigenfunc~
tion x{x)= sin mnx on each of the intervals g, where X{x) doea not vanish.
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